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Conserved Moieties
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In the above cycle the molar amount of theund
subgroup remains constant.

Subgroups whose molar amounts remain constant during
the evolution of a pathway are calledoieties



Conserved Moieties
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Also called: /

Conserved Cycles <:§>

Or \ A}

Moiety Conserved Cycles
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Conserved Moieties
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Over long timescales the

Slow o
moieties are not conserved.
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Conserved Moieties
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Examples

1. ATP, ADP, AMP

2. NADH, NAD /
3. CoA AcetyiCoA
4. Protein,PhosphorylatedProtein @

5. etc.
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Examples

1. ATP, ADP, AMP

2. NADH, NAD /
3. CoA AcetyiCoA
4. Protein, Phosphorylated Protein @

So what?



Examples

1. ATP, ADP, AMP

2. NADH, NAD /

3. CoA AcetylCoA

4. Protein, Phosphorylated Protein CSD
Ny

Cycles add redundancies to the model equations.

2. They introduce a new parameter into the model:
Total moles in the cycle

3. Can cause numerical instability in certain calculations
(Jacobiarbecomes nornvertible)

4. Can have profound effects on the behavior of models
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Redundancies
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Redundancies
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Redundancies

The sum of S1 and S2
remains constant in time
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Redundancies
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Redundancies
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has been reduced by one
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New Parameters in the Model
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New Parameters in the Model

Et=E + E& Vmax
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In a simple cycle, the totaholarity in the cycle acts as a linear scaling factor.




New Parameters in the Model
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New Parameters in the Model

Sequestration of K K

Increase
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Three Conservation Cycles: The net effect is that increases in A inhibit the

B-> C reaction. Similar arguments apply to C
A/B/C

K
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New Parameters in the Model
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The end result is a toggle switch that can display two steady states



How many are there?

For large metabolic maps, 5% to 10%
of the species are involved In
moiety conserved cycles.

That is 5% to 10% of the differential
equations are redundant.
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How are conserved cycles
identified?

Conserved cycles in a pathway appear as lingarly
dependent rows in the stoichiometry matrix.
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Linearly Dependent Rows

A linearly dependent set of vectors is one whers

combination of the other vectors.

least one of the vectors can be written as a line

> at
ar

{1,-1,2}
{3,0,—1}
{9,—-3,4}

{9,-3,4} =3 x {1,-1,2} + 2 x {3,0, -1}

This means there is redundant information in the vector set.
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How are conserved cycles
identified?

Conserved cycles in a pathway appear as line
dependent rows In the stoichiometry matrix.
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The Rank

The Rank of a set of vectors arranged in a matfrix
IS the number ofinearly independentvectors in

the matrix.
{1,-1,2} "1 —1 27
{3303_1} 3 0 ]_
{9, —3,4} | 9 -3 4 |

The Rank for this matrix is two
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

1 0 _1" S5 2 KIFaQa UKS w
N — 0 —1 1 IS of this matrix?

—1 1 0 S1 Type rank(N) in
0 1 -1 | E Matlab or Jarnac.
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

N = 0 -1 1| ES  Rank(N)=2

33



How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

N = 0 -1 1| ES  Rank(N)=2

E*-1=ES
S2 =1 * (ES + S1) 0 1 1] E
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

v U2 U3
1 0 —11 S
N = 0 —1 1 ES
—1 1 0 S1

0 1 —-1| E «—

The Rank for this matrix is two
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

V1 V9 U3
1 0 —17] S «—

N = 0 -1 1| ES «—

~1 1 0] 5
0 1 -1]| E

The Rank for this matrix is two
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

dE . dES )
dt dt

dbS N dSh N dSo
dt dt dt
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

E+FES =T
ES+ 51+ 5 =15
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.

L]
O
L]

O

E+ES=T \4

ES + 51+ 5, =15 /{O

O

|

39



How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.
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How many conserved cycles are there?

Conserved cycles in a pathway appear as linearly
dependent rows in the stoichiometry matrix.
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Echelon Forms

There is a particular kind of matrix that one frequerghcounteresn the
study of the stoichiometry matrixihe Reduced Echelon Form

I 0 O
0 1 0

o O =
o = O
O = o=
o g O
o O =
o = O
—_ O O

Examples of Matrices in Reduced Echelon Form

. All rows that consist entirely of zeros are at the bottom of the matrix.

. In each noreero row, the first norzero entry is a one, called the leading one.

¢ KS fSIRAYI M AY SFOK NRBg Aa 02 GKS
. Each column that contains a leading one has zeros above and below it.

/

If not, then the matrix is in echelon form, otherwise it is in reduced echelon f




Echelon Forms

There is a particular kind of matrix that one frequently encountered in
studying the stoichiometry matrixihe Reduced Echelon Form

I 0 O
0 1 0
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o = O
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Examples of Matrices in Reduced Echelon Form

A reduced echelon form has the following general block structure:
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Echelon Forms

.
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Any matrix can be transformed to its reduced echelon form by a series of:
1. Interchanging rows (exchange)

2. Multiplying a row throughout by a nonzero number (scaling)
3. Adding one row, one or more times to another row (replacement)

Reduction to reduced echelon form can be used to find conservation laws.



Echelon Forms

Let us start with this system:

59
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S
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Recast in Matrix Form:

ds
Nov=1%
T

T

|dentity Matrix

Sy /dt
dES/dt
dS; /dt
dE /dt




Let us start with this system:

S92
ES
S1
E

Echelon Forms

U1
V2
U3
V4
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dsS

Nv=1—

S, /dt
dES/dt
dSy/dt

| dE/dt

dt

Reduce the stoichiometry matrix to reduced echelon form. To
preserve the righthand side, we apply the same operations to

the left-side.

|
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Y Jt
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Echelon Forms

Let us start with this system: Nuv — [@
dt
So [ 1 0 —1 1 [ w1 ] 1 0 0 01T dSa/dt i
ES | 0 -1 1 v | |01 0 0] dES/dt
S —1 1 0 v3 | 1O 0O 1 0 dS1/dt
E | 0 1 =1 /| | va_ 0 0 0 1] [dE/dt

Partition the M matrix in to X and Y, along the same row line
as the reduced echelon form:

ooy
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Echelon Forms

ooy

Multiplying out the lower partition one obtains:

ds
Y — =0
dt

This is the answer we seek. It describes relationships among the rates of
change that do not change in time (the definition of a conserved cycle).
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S, /dt
dES/dt
dSy/dt

| dE/dt

Yy

1. Stoichiometry matrix on the left and identity matrix on the right.

0 O
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1 0 -1 U1 1 0 0 07 [ dSy/dt
ES 0 —1 1 v | 10 1 0 0 dES/dt
-1 1 0 vs | [0 0 1 0 dS1/dt
0 1 =1 | va 0 0 0 1] [dE/dt
2. Add the 1st row to the third row to yield:
1 0 —1] 1 0 0 0]
0 —1 1 01 0 0
0 1 -1 1 0 1 0
0 1 -1 00 0 1]

I A
0 O



[ SGQa ¢NBE |y

So 1 0 —1 11 1 0 0 0 i dSa/dt
ES 0 —1 1 v | [0 1 00 dES/dt
S —1 1 0 v3 | 1O 0O 1 0 dS1/dt
E | 0 1 =1 /| | va_ 0 0 0 1] [dE/dt

3. Add the 2nd row to the third and forth rows to yield:

1 0 =17 [1 0 0 0
0 -1 1 0100
0 0 0 1 1 1 0
0 0 0] |01 0 1

o 0
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= o O =

o O = O

¢ NE

=0 = O O

= o O O

S, /dt
dES/dt
dSy/dt

| dE/dt

Yy

4. Multiply the second row by -1 to yield the final echelon form:

1

0
0
0

o O = O

—1
—1
0
0

1

0
1
0

0

= = O

0

0
0
1

0 O
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[ SGQa ¢NBE |y

So 1 0 —1 11 1 0 0 0 i dSa/dt
ES 0 —1 1 v | [0 1 00 dES/dt
S —1 1 0 v3 | 1O 0O 1 0 dS1/dt
E | 0 1 =1 /| | va_ 0 0 0 1] [dE/dt

4. Multiply the second row by -1 to yield the final echelon form:

1 0 —1] 1 0 0 0]

0 1 -1 0 —1 0 0

—0 0 U 1 1 1 0 N
< w> _0 L0 1_ Y Partition
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Independent
Species

Dependent
Species

l

0] dES/dt

o O O =
o o = O
=

" dSs )/ dt

S, /dt

| dE/dt

= = o =

= = O O
= o o O

} Y Partition

d.So . dSq . dES .
dt dt dt
dE  dES

2
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Independent

. 10 -1 L 0 0 0
Species 0 1 -1 o -1 0 o0
Denend 0 0 0] |1 1 10 N
(é%eer;ieesnt l 0 0 0] 0 1 0 1] } Y Partition
Y% —0 mm) YS=T
. [dSy/dt” Sy dS, dES
2 2 2
1 1 0 dES/dt| 0 dt dt dt
0 1 0 1 dSy/dt | IE  JdES
| dE/dt _ —+——=0

dt dt
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Vd

[ SGQa ¢NB |V

. [ SQ ]. U —J_ m

Independent Species - 1o 0 _1 | -

Dependent Species 1 51 —1 1 Q V3
LB 0 1 =1 ] | va_

SQ+81——ES:T1
E——ES:TQ

Expressing the dependent species in terms of the independent species.

S1 Ty — S5, — ES
EFE = T, - FES



Advanced Analysis

Ng ] } Independent Species

v

} Dependent Species

Reorder the rows in the stoichiometry matrix so that the taporows include
the independent species and the bottomgm_orows include the dependent

species.

Since the bottom No dependent rows can be derived by linear combinations of
the top Nr rows, we can define a matrikge link matrix(Lo), that can carry out

this operation:

No = LoNp.

m = number of rows in thetoichiometrymatrix.



Advanced Analysis

N
vl N
No = LoNpgr
Nr | | I B
N=[NE]=[ L] Na= o
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Advanced Analysis

S R

Lo

Si are the independent species, aldthe dependent species.
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Advanced Analysis

I dS [ dS;/dt
N = — = ¢
[ Lo ] T [ dSa/dt ]

Ngrv|= dS;/dt
Lol Nrpv|= dSg/dt

dSq T ds;

N — 0
dt O " at
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Advanced Analysis

dSq ds;
- - L 0
dt dt

Sa — LoS; =T

[ —Lo I][S*']—T

I'=[-Lo I] S =(S; Sa)

& ¢ allNRE T

1 1 1 0
O 1 0 1

|

So+S1+ES=1T;

I'S =T E+ES=T,

cf. Slide 554
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Advanced Analysis

dSq ds;
- - L 0
dt dt

Sa — LoS; =T

[ —Lo I][S*']—T

I'=[-Lo(I) S =(S; Sa)

& ¢ allNRE T

1 1/1 0
0 1.0 1

1

4

So+S1+ES=1T;

I'S =T E+ES=T,

cf. Slide 55
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Advanced Analysis

No = LoNpgr



Advanced Analysis
I's=1T

P=[-LoI Lo 1) R =0

64



Advanced Analysis

N'TT =0

The conservation laws can be obtained by computing
the null space (kernel) of the transpose of the
stoichiometry matrix.
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What Happens in Simulators

1. From the stoichiometry matrix obtair ] 'n and the set of
dependent and independent species

2. FromI' obtairLg

In your ODE solver: UL comp Sq=LgS; +T and
ds; ‘
el Npg v (5;.54)

to computedSi dt



Advanced Analysis

E ]l [ 1 1][8 | |
BS| T 1 1S ||
CdSy/dt] [-1 0 1]
dSo/dt | — | 1 —1 0| |
Sqg = Lo S;+T
dS;
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Practical Consequences
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Parasitic Protozoa
Trypanosoma, causative
agent for an often fatal
disease called sleeping
sickness. Half a million
people are thought to have
the disease at any one time.




